Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 122(6): 973-983, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36419350

RESUMO

We monitored the effect on function of the G-protein-coupled receptor (GPCR) rhodopsin from small, stepwise changes in bilayer thickness induced by cholesterol. Over a range of phosphatidylcholine bilayers with hydrophobic thickness from ≈21 Å to 38 Å, the metarhodopsin-I (MI)/metarhodopsin-II (MII) equilibrium was monitored with UV-visible spectroscopy while ordering of hydrocarbon chains was probed by 2H-NMR. Addition of cholesterol shifted equilibrium toward MII for bilayers thinner than the average length of hydrophobic transmembrane helices (27 Å) and to MI for thicker bilayers, while small bilayer thickness changes within the range of the protein hydrophobic thickness drastically up- or downregulated MII formation. The cholesterol-induced shifts toward MII for thinner membranes correlated with the cholesterol-induced increase of bilayer hydrophobic thickness measured by NMR, consistent with continuum elastic modeling. The energetic penalty of adding cholesterol to thick bilayers caused rhodopsin oligomerization and a shift toward MI. In membranes of physiological thickness, changes in bilayer mechanical properties induced by cholesterol potentiated the interplay between bilayer and protein thickness resulting in large swings of the MI-MII equilibrium. In membrane containing cholesterol, elastic deformations near the protein are a dominant energetic contribution to the functional equilibrium of the model GPCR rhodopsin.


Assuntos
Fosfatidilcolinas , Rodopsina , Colesterol , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Estrutura Secundária de Proteína , Rodopsina/química , Receptores Acoplados a Proteínas G/metabolismo
2.
Biochim Biophys Acta Biomembr ; 1863(8): 183621, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33865808

RESUMO

Integral membrane G protein-coupled receptors (GPCR) regulate multiple physiological processes by transmitting signals from extracellular milieu to intracellular proteins and are major targets of pharmaceutical drug development. Since GPCR are inherently flexible proteins, their conformational dynamics can be studied by spectroscopic techniques such as electron paramagnetic resonance (EPR) which requires selective chemical labeling of the protein. Here, we developed protocols for selective chemical labeling of the recombinant human cannabinoid receptor CB2 by judiciously replacing naturally occurring reactive cysteine residues and introducing a new single cysteine residue in selected positions. The majority of the 47 newly generated single cysteine constructs expressed well in E. coli cells, and more than half of them retained high functional activity. The reactivity of newly introduced cysteine residues was assessed by incorporating nitroxide spin label and EPR measurement. The conformational transition of the receptor between the inactive and activated form were studied by EPR of selectively labeled constructs in the presence of either a full agonist CP-55,940 or an inverse agonist SR-144,528. We observed evidence for higher mobility of labels in the center of internal loop 3 and a structural change between agonist vs. inverse agonist-bound CB2 in the extracellular tip of transmembrane helix 6. Our results demonstrate the utility of EPR for studies of conformational dynamics of CB2.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Conformação Proteica/efeitos dos fármacos , Receptor CB2 de Canabinoide/genética , Receptores de Canabinoides/genética , Canfanos/farmacologia , Cicloexanóis/farmacologia , Cisteína/genética , Humanos , Mutagênese Sítio-Dirigida , Pirazóis/farmacologia , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Marcadores de Spin
3.
J Phys Chem B ; 124(5): 828-839, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31916765

RESUMO

Ethanolamine plasmalogen (EtnPLA) is a conical-shaped ether lipid and an essential component of neurological membranes. Low stability against oxidation limits its study in experiments. The concentration of EtnPLA in the bilayer varies depending on cell type and disease progression. Here we report on mixed bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-(1Z-octadecenyl)-2-oleoyl-sn-glycero-3-phosphoethanolamine (C18(Plasm)-18:1PE, PLAPE), an EtnPLA lipid subtype, at mole ratios of 2:1, 1:1, and 1:2. We present X-ray diffuse scattering (XDS) form factors F(qz) from oriented stacks of bilayers, related electron-density profiles, and hydrocarbon chain NMR order parameters. To aid future research on EtnPLA lipids and associated proteins, we have also extended the CHARMM36 all-atom force field to include the PLAPE lipid. The ability of the new force-field parameters to reproduce both X-ray and NMR structural properties of the mixed bilayer is remarkable. Our results indicate a thickening of the bilayer upon incorporation of increasing amounts of PLAPE into mixed bilayers, a reduction of lateral area per molecule, and an increase in lipid tail-ordering. The lateral compressibility modulus (KA) calculated from simulations yielded values for PLAPE similar to POPC.


Assuntos
Bicamadas Lipídicas/química , Plasmalogênios/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Termodinâmica
4.
Nat Commun ; 10(1): 5616, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819053

RESUMO

The functional significance of ordered nanodomains (or rafts) in cholesterol rich eukaryotic cell membranes has only begun to be explored. This study exploits the correspondence of cellular rafts and liquid ordered (Lo) phases of three-component lipid bilayers to examine permeability. Molecular dynamics simulations of Lo phase dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), and cholesterol show that oxygen and water transit a leaflet through the DOPC and cholesterol rich boundaries of hexagonally packed DPPC microdomains, freely diffuse along the bilayer midplane, and escape the membrane along the boundary regions. Electron paramagnetic resonance experiments provide critical validation: the measured ratio of oxygen concentrations near the midplanes of liquid disordered (Ld) and Lo bilayers of DPPC/DOPC/cholesterol is 1.75 ± 0.35, in very good agreement with 1.3 ± 0.3 obtained from simulation. The results show how cellular rafts can be structurally rigid signaling platforms while remaining nearly as permeable to small molecules as the Ld phase.


Assuntos
Permeabilidade da Membrana Celular , 1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Simulação por Computador , Difusão , Bicamadas Lipídicas/metabolismo , Oxigênio/química , Fosfatidilcolinas/química , Probabilidade , Termodinâmica
5.
Biochim Biophys Acta Biomembr ; 1860(9): 1840-1847, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29501608

RESUMO

α-Synuclein (α-Syn) is a presynaptic protein that is accumulated in its amyloid form in the brains of Parkinson's patients. Although its biological function remains unclear, α-syn has been suggested to bind to synaptic vesicles and facilitate neurotransmitter release. Recently, studies have found that α-syn induces membrane tubulation, highlighting a potential mechanism for α-syn to stabilize highly curved membrane structures which could have both functional and dysfunctional consequences. To understand how membrane remodeling by α-syn affects amyloid formation, we have studied the α-syn aggregation process in the presence of phosphatidylglycerol (PG) micellar tubules, which were the first reported example of membrane tubulation by α-syn. Aggregation kinetics, ß-sheet content, and macroscopic protein-lipid structures were observed by Thioflavin T fluorescence, circular dichroism spectroscopy and transmission electron microscopy, respectively. Collectively, the presence of PG micellar tubules formed at a stochiometric (L/P = 1) ratio was found to stimulate α-syn fibril formation. Moreover, transmission electron microscopy and solid-state nuclear magnetic resonance spectroscopy revealed the co-assembly of PG and α-syn into fibril structures. However, isolated micellar tubules do not form fibrils by themselves, suggesting an important role of free α-syn monomers during amyloid formation. In contrast, fibrils did not form in the presence of excess PG lipids (≥L/P = 50), where most of the α-syn molecules are in a membrane-bound α-helical form. Our results provide new mechanistic insights into how membrane tubules modulate α-syn amyloid formation and support a pivotal role of protein-lipid interaction in the dysfunction of α-syn.

6.
Biophys J ; 108(5): 1125-32, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25762324

RESUMO

Lipid composition of the membrane and rhodopsin packing density strongly modulate the early steps of the visual response of photoreceptor membranes. In this study, lipid-order and bovine rhodopsin function in proteoliposomes composed of the sn-1 chain perdeuterated lipids 14:0d27-14:1-PC, 16:0d31-16:1-PC, 18:0d35-18:1-PC, or 20:0d39-20:1-PC at rhodopsin/lipid molar ratios from 1:70 to 1:1000 (mol/mol) were investigated. Clear evidence for matching of hydrophobic regions on rhodopsin transmembrane helices and hydrophobic thickness of lipid bilayers was observed from (2)H nuclear magnetic resonance order parameter measurements at low rhodopsin concentrations. Thin bilayers stretched to match the length of transmembrane helices observed as increase of sn-1 chain order, while thicker bilayers were compressed near the protein. A quantitative analysis of lipid-order parameter changes suggested that the protein adjusts its conformation to bilayer hydrophobic thickness as well, which confirmed our earlier circular-dichroism measurements. Changes in lipid order parameters upon rhodopsin incorporation vanished for bilayers with a hydrophobic thickness of 27 ± 1 Å, suggesting that this is the bilayer thickness at which rhodopsin packs in bilayers at the lowest membrane perturbation. The lipid-order parameter studies also indicated that a hydrophobic mismatch between rhodopsin and lipids triggers rhodopsin oligomerization with increasing rhodopsin concentrations. Both hydrophobic mismatch and rhodopsin oligomerization result in substantial shifts of the equilibrium between the photointermediates metarhodopsin I and metarhodopsin II; increasing bilayer thickness favors formation of metarhodopsin II while oligomerization favors metarhodopsin I. The results highlight the importance of hydrophobic matching for rhodopsin structure, oligomerization, and function.


Assuntos
Bicamadas Lipídicas/química , Multimerização Proteica , Rodopsina/química , Animais , Bovinos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química
7.
Biochimie ; 107 Pt A: 28-32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25447139

RESUMO

The human genome encodes about 800 different G protein-coupled receptors (GPCR). They are key molecules in signal transduction pathways that transmit signals of a variety of ligands such as hormones and neurotransmitters to the cell interior. Upon ligand binding, the receptors undergo structural transitions that either enhance or inhibit transmission of a specific signal to the cell interior. Here we discuss results which indicate that transmission of such signals can be strongly modulated by the composition of the lipid matrix into which GPCR are imbedded. Experimental results have been obtained on rhodopsin, a prototype GPCR whose structure and function is representative for the great majority of GPCR in humans. The data shed light on the importance of curvature elastic stress in the lipid domain for function of GPCR.


Assuntos
Membrana Celular/fisiologia , Lipídeos de Membrana/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Rodopsina/fisiologia , Membrana Celular/química , Elasticidade , Humanos , Fluidez de Membrana , Lipídeos de Membrana/química , Modelos Biológicos , Modelos Moleculares , Transdução de Sinais/fisiologia
8.
Faraday Discuss ; 161: 383-95; discussion 419-59, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23805751

RESUMO

Membranes with a high content of polyunsaturated phosphatidylethanolamines (PE) facilitate formation of metarhodopsin-II (M(II)), the photointermediate of bovine rhodopsin that activates the G protein transducin. We determined whether M(II)-formation is quantitatively linked to the elastic properties of PEs. Curvature elasticity of monolayers of the polyunsaturated lipids 18 : 0-22 : 6(n - 3)PE, 18 : 0-22 : 5(n)- 6PE and the model lipid 18 : 1(n - 9)-18 : 1,(n- 9)PE were investigated in the inverse hexagonal phase. All three lipids form lipid monolayers with rather low spontaneous radii of curvature of 26-28 angstroms. In membranes, all three PEs generate high negative curvature elastic stress that shifts the equilibrium of MI(I)/M(II) photointermediates of rhodopsin towards M(II) formation.


Assuntos
Fosfatidiletanolaminas/química , Rodopsina/química , Animais , Bovinos , Membrana Celular/química , Luz , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Fosfatidilcolinas/química , Difração de Raios X
9.
Biophys J ; 99(3): 817-24, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20682259

RESUMO

We considered the issue of whether shifts in the metarhodopsin I (MI)-metarhodopsin II (MII) equilibrium from lipid composition are fully explicable by differences in bilayer curvature elastic stress. A series of six lipids with known spontaneous radii of monolayer curvature and bending elastic moduli were added at increasing concentrations to the matrix lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and the MI-MII equilibrium measured by flash photolysis followed by recording UV-vis spectra. The average area-per-lipid molecule and the membrane hydrophobic thickness were derived from measurements of the (2)H NMR order parameter profile of the palmitic acid chain in POPC. For the series of ethanolamines with different levels of headgroup methylation, shifts in the MI-MII equilibrium correlated with changes in membrane elastic properties as expressed by the product of spontaneous radius of monolayer curvature, bending elastic modulus, and lateral area per molecule. However, for the entire series of lipids, elastic energy explained the shifts only partially. Additional contributions correlated with the capability of the ethanolamine headgroups to engage in hydrogen bonding with the protein, independent of the state of ethanolamine methylation, with introduction of polyunsaturated sn-2 hydrocarbon chains, and with replacement of the palmitic acid sn-1 chains by oleic acid. The experiments point to the importance of interactions of rhodopsin with particular lipid species in the first layer of lipids surrounding the protein as well as to membrane elastic stress in the lipid-protein domain.


Assuntos
Elasticidade , Membranas Artificiais , Rodopsina/metabolismo , Animais , Bovinos , Hidrocarbonetos/metabolismo , Ligação de Hidrogênio , Lipídeos de Membrana/química , Estresse Mecânico , Termodinâmica , Água
10.
Biochemistry ; 45(51): 15583-90, 2006 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-17176079

RESUMO

We report on a novel reconstitution method for G-protein-coupled receptors (GPCRs) that yields detergent-free, single, tubular membranes in porous anodic aluminum oxide (AAO) filters at concentrations sufficient for structural studies by solid-state NMR. The tubular membranes line the inner surface of pores that traverse the filters, permitting easy removal of detergents during sample preparation as well as delivery of ligands for functional studies. Reconstitution of bovine rhodopsin into AAO filters did not interfere with rhodopsin function. Photoactivation of rhodopsin in AAO pores, monitored by UV-vis spectrophotometry, was indistinguishable from rhodopsin in unsupported unilamellar liposomes. The rhodopsin in AAO pores is G-protein binding competent as shown by a [35S]GTPgammaS binding assay. The lipid-rhodopsin interaction was investigated by 2H NMR on sn-1- or sn-2-chain perdeuterated 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phospholine as a matrix lipid. Rhodopsin incorporation increased mosaic spread of bilayer orientations and contributed to spectral density of motions with correlation times in the range of nano- to microseconds, detected as a significant reduction in spin-spin relaxation times. The change in lipid chain order parameters due to interaction with rhodopsin was insignificant.


Assuntos
Bicamadas Lipídicas/química , Nanopartículas/química , Rodopsina/química , Óxido de Alumínio/química , Óxido de Alumínio/metabolismo , Animais , Bovinos , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/fisiologia , Filtração/instrumentação , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Ligantes , Luz , Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética , Micelas , Fosfatidilcolinas/química , Porosidade , Ligação Proteica/genética , Proteolipídeos/química , Proteolipídeos/genética , Proteolipídeos/metabolismo , Rodopsina/genética , Rodopsina/fisiologia , Espalhamento de Radiação , Espectrofotometria Ultravioleta
11.
J Biol Chem ; 281(44): 33233-41, 2006 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16959786

RESUMO

The interaction of bovine rhodopsin with poly- and monounsaturated lipids was studied by (1)H MAS NMR with magnetization transfer from rhodopsin to lipid. Experiments were conducted on bovine rod outer segment (ROS) disks and on recombinant membranes containing lipids with polyunsaturated, docosahexaenoyl (DHA) chains. Poly- and monounsaturated lipids interact specifically with different sites on the rhodopsin surface. Rates of magnetization transfer from protein to DHA are lipid headgroup-dependent and increased in the sequence PC < PS < PE. Boundary lipids are in fast exchange with the lipid matrix on a time scale of milliseconds or shorter. All rhodopsin photointermediates transferred magnetization preferentially to DHA-containing lipids, but highest rates were observed for Meta-III rhodopsin. The experiments show clearly that the surface of rhodopsin has sites for specific interaction with lipids. Current theories of lipid-protein interaction do not account for such surface heterogeneity.


Assuntos
Metabolismo dos Lipídeos , Rodopsina/metabolismo , Segmento Externo da Célula Bastonete/metabolismo , Animais , Bovinos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Segmento Externo da Célula Bastonete/efeitos da radiação
13.
J Biol Chem ; 277(30): 27176-82, 2002 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-11986306

RESUMO

The effect of temperature, pH, and free [Mg(2+)] on the apparent equilibrium constant of pyruvate kinase (phosphoenol transphosphorylase) (EC ) was investigated. The apparent equilibrium constant, K', for the biochemical reaction P-enolpyruvate + ADP = ATP + Pyr was defined as K' = [ATP][Pyr]/[ADP][P-enolpyruvate], where each reactant represents the sum of all the ionic and metal complexed species in M. The K' at pH 7.0, 1.0 mm free Mg(2+) and I of 0.25 m was 3.89 x 10(4) (n = 8) at 25 degrees C. The standard apparent enthalpy (DeltaH' degrees ) for the biochemical reaction was -4.31 kJmol(-1) in the direction of ATP formation. The corresponding standard apparent entropy (DeltaS' degrees ) was +73.4 J K(-1) mol(-1). The DeltaH degrees and DeltaS degrees values for the reference reaction, P-enolpyruvate(3-) + ADP(3-) + H(+) = ATP(4-) + Pyr(1-), were -6.43 kJmol(-1) and +180 J K(-1) mol(-1), respectively (5 to 38 degrees C). We examined further the mass action ratio in rat heart and skeletal muscle at rest and found that the pyruvate kinase reaction in vivo was close to equilibrium i.e. within a factor of about 3 to 6 of K' in the direction of ATP at the same pH, free [Mg(2+)], and T. We conclude that the pyruvate kinase reaction may be reversed under some conditions in vivo, a finding that challenges the long held dogma that the reaction is displaced far from equilibrium.


Assuntos
Músculo Esquelético/enzimologia , Miocárdio/enzimologia , Piruvato Quinase/metabolismo , Animais , Bovinos , Glicólise , Concentração de Íons de Hidrogênio , Cinética , Magnésio/metabolismo , Magnésio/farmacologia , Espectroscopia de Ressonância Magnética , Modelos Químicos , Coelhos , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...